a2 United States Patent

Alexander et al.

US009483409B2

US 9,483,409 B2
*Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)
(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

STORE FORWARDING CACHE

Applicant: International Business Machines
Corporation, Armonk, NY (US)
Inventors: Khary J. Alexander, Poughkeepsie,
NY (US); Jonathan T. Hsieh,
Poughkeepsie, NY (US); Christian
Jacobi, Poughkeepsie, NY (US); James
R. Mitchell, Poughkeepsie, NY (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 23 days.

This patent is subject to a terminal dis-
claimer.
Appl. No.: 14/614,748
Filed: Feb. 5, 2015

Prior Publication Data

US 2016/0232101 Al Aug. 11, 2016

Int. CL.

GO6F 12/08 (2016.01)

GO6F 9/30 (2006.01)

GO6F 12/12 (2016.01)

U.S. CL

CPC ... GO6F 12/0875 (2013.01); GOGF 9/30043

(2013.01); GO6F 12/0895 (2013.01); GO6F
12/12 (2013.01); GO6F 2212/452 (2013.01);
GOG6F 2212/69 (2013.01)
Field of Classification Search

CPC ... GOGF 12/0875; GOGF 9/30043; GOGF
12/0895; GOGF 12/12
USPC oo, 711/125, 133, 154, 156, 205, 221

See application file for complete search history.

DETERMINE LOGICAL ADDRESS
CACHE INDEX OF LOAD

READ N ASSOCIATIVE
ENTRIES FROM
DETERMINED INDEX

RETRIEVE DATA FROM
'YOUNGEST STORE ENTRY THAT
IS OLDER THAN THE LOAD

8205

8225

(56) References Cited

U.S. PATENT DOCUMENTS

4,991,090 A 2/1991 Emma et al.
5,488,706 A 1/1996 Wendorf et al.
5,526,510 A 6/1996 Akkary et al.
5,649,155 A 7/1997 Krumm et al.
5,724,536 A 3/1998 Abramson et al.
5,860,104 A 1/1999 Witt et al.
5,881,262 A 3/1999 Abramson et al.
5,898,854 A 4/1999 Abramson et al.
5,930,819 A 7/1999 Hetherington et al.
5,987,561 A 11/1999 Witt et al.
(Continued)

OTHER PUBLICATIONS

Busaba et al., “IBM zEnterprise 196 microprocessor and cache
subsystem”, IBM J. Res. & Dev., vol. 56, No. 1/2, Paper 1, Jan./Mar.
2012, DOT: 10.1147/JRD.2011.2173962, © 2012 IBM, pp. 1-12.

(Continued)

Primary Examiner — Stephen Elmore
(74) Attorney, Agent, or Firm — Alexander G. Jochym

(57) ABSTRACT

A load request is received to retrieve a piece of data from a
location in memory and the load request follows one or more
store requests in a set of instructions to store a piece of data
in the location in memory. One or more possible locations in
a cache for a piece of data corresponding to the location in
memory is determined. Each possible location of the one or
more possible locations in the cache is determined. It is then
determined if at least one location of the one or more
possible locations contains data to be stored in the location
in memory. Data in one location of the at least one location
is loaded, the data in the one location is from a store request
of the one or more store requests and the store request is
closest in the set of instructions to the load request.

20 Claims, 3 Drawing Sheets

/,/ 200

RETRIEVE DATA
FROM LOCAL CACHE

COMPARE LOAD AGAINST
QUEUE OF ALL IN-FLIGHT
STORE INSTRUCTIONS

REJECT LOAD, RE-EXECUTE

US 9,483,409 B2

Page 2
(56) References Cited 8,533,438 B2* 9/2013 Hooker GO6F 9/30/043
712/216
U.S. PATENT DOCUMENTS 8,627,047 B2 1/2014 Tsai et al.
8,650,286 B1* 2/2014 Sajassi HOA4L 45/586
6,006,309 A 12/1999 Shelly et al.) 370/389
6,079,006 A 6/2000 Pickett 8,930,629 B2 1/2015 Ghai et al.
6,141,747 A 10/2000 Witt 9,135,005 B2 9/2015 A!exander et al.
6,189,068 Bl 2/2001 Witt et al. 9,251,084 B2 2/2016 Kiyota
6,349,382 Bl 2/2002 Feiste et al. 9,270,542 B2* 2/2016 Gamage HO041L 43/028
6,463,523 Bl 10/2002 Kessler et al. 2009/0210679 Al* 82009 Tsaicoeoevrne.. GO6F 9/3834
6,662,280 Bl 12/2003 Hughes 712/225
6,718,839 B2 4/2004 Chaudhry et al. 2013/0318330 Al 11/2013 Alexander et al.
6,804,744 Bl 10/2004 Abbas 2014/0181482 Al 6/2014 Smaus et al.
6,915,412 B2 7/2005 Nguyen et al. 2015/0095615 Al 4/2015 Abdallah et al.
6,934,829 B2 82005 Nguyen et al. 2015/0278120 Al 10/2015 Shum
6,959,375 B2 10/2005 Nguyen et al. 2015/0278121 Al 10/2015 Gschwind et al.
6,986,024 B2 1/2006 Nguyen et al.
7,454,580 B2 11/2008 Arimilli et al.
7,519,771 Bl 4/2009 Faanes et al. OTHER PUBLICATIONS
7,539,820 B2 5/2009 Hiratsuka
7,610,458 B2 10/2009 Arimilli et al. U.S. Appl. No. 15/086,546, filed Mar. 31, 2016; Entitled “Store
8,176,261 B2 N 5/2012 Sugizaki Forwarding Cache”; Alexander et al.
8417.890 B2* 4/2013 Jacobi GOGF 17%/10/?% Alexander et al.; U.S. Appl. No. 15/155,493, filed May 16, 2016;
8468325 B2 6/2013 Alexander et al. Entitled “Store Forwarding Cache”.
8,495,341 B2 7/2013 Busaba et al.
8,521,992 B2 8/2013 Alexander et al. * cited by examiner

U.S. Patent Nov. 1, 2016 Sheet 1 of 3 US 9,483,409 B2

100
“\\J\\\\

101
)
102 1Fy 106
104 1SV
00 ? ISSUE
116 —{ PREDICTION | f=+——={ DU }+—— | i= 2 H—118
TABLE
110
) LDQ 11126
ENTRIES
OPERAND | —1-120
ADDRESS s1a 106
GENERATION UNIT | s]
—1-122
112
) STORE
= FORWARDING |~} 123
CACHE
L1 p——} 124
3
11)4 108 Lsu
OTHER
COMPONENTS

FIG. 1

U.S. Patent Nov. 1, 2016

|

(_ START

i

DETERMINE LOGICAL ADDRESS
CACHE INDEX OF LOAD

Sheet 2 of 3

/)/ 200

~— 5205

|
READ N ASSOCIATIVE

ENTRIES FROM
DETERMINED INDEX

5215

ANY MATCHING, NO

~— 8210

RETRIEVE DATA

VALID STORES?

FROM LOCAL CACHE [~ S220

RETRIEVE DATA FROM
YOUNGEST STORE ENTRY THAT
IS OLDER THAN THE LOAD

~—S225

|

COMPARE LOAD AGAINST

QUEUE OF ALL IN-FLIGHT
STORE INSTRUCTIONS

N

ANY MATCHING
STORES THAT DID NOT
FORWARD?

REJECT LOAD, RE-EXECUTE

S230

S$235

LOAD SUCCESSFULLY
EXECUTED

f!
END

~— 8240

~—S245

FIG. 2

US 9,483,409 B2

US 9,483,409 B2

Sheet 3 of 3

Nov. 1, 2016

U.S. Patent

001

€ Old

(s)3aoinaa
IYNY3ILX3

H 3
80€

!

1INN SNOILVOINNWINOD

10¢€ _J

JOVHOLS
1N3LSISH3d

(S)30oV4d3LNI
o/l

AV1dSId

b
90€

S0€

AJONEN

N
20€

v0€ L

€0€ —~— 3IHOVO

0

(8)40SS3004d

3
L0€

60€

US 9,483,409 B2

1
STORE FORWARDING CACHE

BACKGROUND OF THE INVENTION

The present invention relates generally to the field of
microprocessors, and more particularly to store to load data
forwarding from a large number of uncommitted store
instructions.

In high performance and especially out-of-order proces-
sors, operand store compare hazards contribute significantly
to delays in instruction processing and check pointing. In
microprocessors that execute load and store instructions
out-of-order, three operand store compare hazards (store-
hit-load, non-forwardable load-hit store, and persistent non-
forwardable load-hit store) can occur due to reordering
between dependent loads and stores. One way to alleviate
these delays is to speculatively forward data form uncom-
mitted stores to subsequent dependent loads. This forward-
ing is generally accomplished by keeping uncommitted store
data in a queue-like structure, against which subsequent
loads compare, and delivering the matching data to the load
out of the queue.

SUMMARY

Embodiments of the present invention include a method,
computer program product and system for executing a load
with store forwarding data. In one embodiment, a load
request is received, wherein the load request is a request to
retrieve a piece of data from a location in memory and
wherein the load request follows one or more store requests
in a set of instructions to store a piece of data in the location
in memory. One or more possible locations in a cache for a
piece of data corresponding to the location in memory is
determined. Responsive to determining the one or more
possible locations in the cache, each possible location of the
one or more possible locations in the cache is determined. If
at least one location of the one or more possible locations
contains data to be stored in the location in memory is
determined. Responsive to determining that the at least one
location of the one or more possible locations contains data
to be stored in the location in memory, data in one location
of the at least one location is loaded, wherein the data in the
one location is from a store request of the one or more store
requests and wherein the store request is closest in the set of
instructions to the load request.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a functional block diagram of a computing
system, in accordance with an embodiment of the present
invention;

FIG. 2 is a flowchart depicting operational steps for
executing a load with possible store forwarding data, in
accordance with an embodiment of the present invention;

FIG. 3 depicts a block diagram of components of the
computing system of FIG. 1, in accordance with an embodi-
ment of the present invention.

DETAILED DESCRIPTION

Embodiments of the present invention recognize that
speculatively forwarding data from uncommitted stores to
subsequent dependent loads has several limitations that
make it unideal for use in a high performance, out-of-order
processor. First, an out-of-order processor benefits from
having a large number of queue entries to allow many store

10

15

20

25

30

35

40

45

50

55

60

65

2

instructions in flight (completed instructions that are not yet
retired) before check pointing and updating the local cache.
However, the size of the queue is limited by the cycle time
required to access all the entries for forwarding. Second,
traditional store forwarding implementations must allocate
space for store data on a per instruction basis. Since store
instructions can have varying operand lengths (e.g., between
1 byte and 256 bytes), either some of the circuit area used
to hold data to be forwarded per instruction is wasted or
some of the data per instruction is not available for forward-
ing. A solution is required to solve both of the above
referenced problems in a reasonable amount of circuit area.

Embodiments of the present invention provide for an
associative cache that contains data from in-flight store
instructions. Entries in the cache are populated by data from
store instructions as those instructions execute. The entries
are invalidated when the corresponding store instructions are
flushed from the pipeline or checkpoint. Data from store
instructions is forwarded to dependent loads from the cache
instead of directly from a queue that tracks the store instruc-
tions, as known in the art. Data from the store instructions
cache is also combined with data from the local cache to
provide all bytes requested by a load. Finally, a load com-
pares against a queue to validate the correctness of the data
that was forwarded.

Embodiments of the present invention are superior to
traditional queue-based forwarding techniques. First, the
size of the queue that tracks in flight store instructions is
decoupled from the size of the cache that forwards data to a
given dependent load. This means that the queue can be
larger, due to not having to store data to be forwarded, than
a queue of an equivalent processor using traditional queue-
based forwarding. The larger queue enables better perfor-
mance with more in flight store instructions. Second, cache
entries are dynamically allocated to stores in flight during
execution time. This allows, for example with cache entries
of 8 bytes, an in-flight store of 1 byte to use 1 cache entry
and an in-flight store of 256 bytes to use 32 cache entries.
This efficiently allocates circuit area per instruction and
allows more stores in flight while neither being limited by
the total store forwarding data structures available nor
allowing less than the full operand length to be forwarded
from every store. This benefit also applies in a multi-
threaded processing core, where one thread may have more
store instructions or store instructions with longer operands.

As used herein, the term “load” is used generally and
makes reference to an instruction for loading data from
memory. In some instances, the term “load” makes reference
to data recently retrieved from memory. The term “store” is
used generally and makes reference to an instruction for
storing data into memory. In some instances, the term
“store”” makes reference to data recently written to memory.
In an embodiment, memory can include any suitable volatile
or non-volatile computer readable storage media. Memory
may include random access memory (RAM), cache, optical
and magnetic drives, thumb drives, and smart cards.

FIG. 1 is a block diagram illustrating one example of
computing system 100 applicable to one or more processes,
instructions, and data in accordance with one or more
embodiments of the present invention. Computing system
100 comprises processor 101. The processor 101 comprises
a single integrated circuit processor such as a superscale
processor, which, includes various execution units, registers,
buffers, memories, and other functional units that are formed
by integrated circuitry. The processor 101, in one embodi-

US 9,483,409 B2

3

ment, is capable of issuing and executing instructions out-
of-order. In an embodiment, processor 101 may be more
than one processor.

The processor 101, in one embodiment, comprises an
instruction fetch unit (IFU) 102, an instruction decode unit
(IDU) 104, an instruction issue unit (ISU) 106, a load/store
unit (LSU) 108, an operand address generation unit 110, a
fixed point unit 112 (or any other execution unit(s)), and
other components 114 such as various other execution units,
registers, buffers, memories, and other functional units. The
IFU 102, in one embodiment, comprises an operand-store-
compare (OSC) prediction table 116. The OSC prediction
table 116 creates entries based on the instruction address of
a load and remembers one or more flags for the load.

The ISU 106, in this embodiment, comprises an issue
queue 118. The issue queue 118 holds decoded instructions
that are dispatched and temporarily placed in the issue queue
118. The instruction are held in the issue queue 118 until all
their required operands are available. From the issue queue
118, instructions can be issued opportunistically to execu-
tion units, e.g., LSU 108, FXU 112, etc., of the processor
101. In other words, the instructions can be issued out-of-
order. The instructions, however, are maintained in the issue
queue 118 until execution of the instructions is complete,
and the result data, if any, are written back, in case any of the
instructions need to be reissued.

The LSU 108, in this embodiment, comprises a load
queue (LDQ) 120, a store queue (STQ) 122, a store for-
warding cache 123, and an [.1 cache 124. The LDQ 120 and
the STQ 122 each comprise entries 126, 128, respectively,
that track additional information associated with outstanding
load and store instructions. The entries 126 in the LDQ 120
are the same as traditional entries in current out-of-order
processors. The entries 128 in the STQ 122 are different than
traditional entries in current out-of-order processors. The
entries 128 tracks information associated with outstanding
store instructions, however, the data of the outstanding store
instructions is located in the store forwarding cache 123. It
should be noted that various embodiments of the present
invention are not limited to the configuration of the proces-
sor 101 as shown in FIG. 1. The embodiments of the present
invention are applicable to a variety of architectures which
can vary from the example shown in FIG. 1.

The store forwarding cache 123 is an n-way associative
cache located in LSU 108 that contains data of outstanding
store instructions (i.e., in flight store instructions). In other
words, an n-way associative cache can have each entry in
main memory go to any one of n number of ways or
locations in the cache. In an alternative embodiment, the
store forwarding cache 123 may be located in the L1 cache
124, may be located in the processor 101, or may be a part
of other components 114 (a separate piece of memory). In
yet another alternative embodiment, the store forwarding
cache 123 may be located off of the processor 101. Entries
in the store forwarding cache are populated by data from
store instructions as those instructions execute. The entries
are invalidated, or removed, when the corresponding store
instructions are flushed from the pipeline or checkpoint.
Data from store instructions is forwarded to dependent loads
from the store forwarding cache 123 instead of directly from
the entries 128 in the STQ 122, as done in traditional
out-of-order processors. Data in the store forwarding cache
123 may also be combined with data from the local cache
(e.g., I cache, L1 cache 124, etc.) when forwarded to the
dependent loads.

The store forwarding cache 123 contains rows that are
indexed using the instruction’s logical address. Each row

25

35

40

45

65

4

may contain multiple ways, and an entry occupies one of
those ways. Each entry may consist of a logical address tag,
a directory hit way tag, an instruction age/identifier tag, a
byte validity indicator, and the store data. The directory hit
way tag indicates which way in the local cache the entry (a
line or block) is located. The logical address tag, in combi-
nation with the directory hit way tag, indicates the location
of the entry in main memory. The instruction age/identifier
tag indicates information that may be used to determine the
age of the entry. The byte validity indicators indicate which
bytes the entry is stored in. The store data is the data that is
to be stored.

In an embodiment, a store may execute with enough bytes
of result data that the instruction’s operand address crosses
an 8-byte boundary in the storage. Therefore, the store’s data
populates two separate cache entries in two adjacent
indexes. The ways for each index are chosen independently.
The high order portion of the store’s logical address not used
for indexing is added to each entry as the logical address tag.
The store’s directory hit way and instruction age tags are
also added to each entry. The byte validity indicators are set
according to which bytes in each entry are occupied by the
store’s data.

In general, the IFU 102 fetches instruction codes stored in
an I-cache, which can be part of the .1 cache 124. These
fetched instruction codes are decoded by the IDU 104 into
instruction processing data. Once decoded, the instructions
are dispatched and temporarily placed in an appropriate
issue queue 118. The instructions are held in the issue queue
118 until all their required operands are available. From the
issue queue(s) 118, instructions can be issued opportunisti-
cally to the execution units, e.g., LSU 108, FXU 112, etc.,
of the processor 101 for execution. In other words, the
instructions can be issued out-of-order. The instructions,
however, are maintained in the issue queue(s) 118 until
execution of the instructions is complete, and the result data,
if any, are written back, in case any of the instructions need
to be reissued.

During execution within one of the execution units, e.g.,
LSU 108, FXU 112, an instruction receives operands, if any,
from one or more architected and/or rename registers within
a register file coupled to the execution unit. After an execu-
tion unit finishes execution of an instruction, the execution
unit writes the result to the designated destination as speci-
fied by the instruction and removes the instruction from the
issue queue and the completion of instructions can then be
scheduled in program order. The operand address generation
unit 110 generates operand address information for load and
store instructions and writes these addresses into the respec-
tive LDQ 120 and the STQ 122. The FXU 112 writes data
values in the STQ 122.

The LSU 108, as discussed above, receives load and store
instructions from the ISU 106, and executes the load and
store instructions. In general, each load instruction includes
address information specifying an address of needed data. In
one embodiment, the LSU 108 supports out of order execu-
tions of load and store instructions, thereby achieving a high
level of performance. In one embodiment, the LSU 108 is
pipelined. That is, the LSU 108 executes load and store
instructions via a set of ordered pipeline stages performed in
sequence.

FIG. 2 is a flowchart of workflow 200 depicting opera-
tional steps for executing a load with possible store forward-
ing data, in accordance with an embodiment of the present
invention. In one embodiment, the steps of the workflow are
performed by LSU 108. Alternatively, steps of the workflow
can be performed by any other program while working with

US 9,483,409 B2

5

LSU 108. In an embodiment, LSU 108 may invoke work-
flow 200 upon receiving a load request. In an alternative
embodiment, LSU 108 may invoke workflow 200 upon
performing out-of-order processing.

LSU 108 determines the logical address cache index of
the load (step S205). The LSU 108 receives a load request
for a piece of data that is located in main memory. Based on
the location of the data in main memory, the LSU 108
determines the appropriate index(s) of the store forwarding
cache 123 that the piece of data could be located. For each
individual byte of the piece of data in the load request, the
LSU 108 determines the appropriate index(s) of the store
forwarding cache. In other words, each byte of the piece of
data of the load request may have multiple index(s).

LSU 108 reads n-associative entry locations from the
determined index (step S210). As discussed in the previous
step, LSU 108 determines the appropriate index(s) of the
store forwarding cache 123 that the piece of data could be
located. LSU 108 reads each way of the store forwarding
cache 123 based on the determined index(s). In other words
LSU 108 reads each possible location on the store forward-
ing cache 123 the piece of data may be stored if the store
forwarding cache 123 has the data.

LSU 108 determines if there are any matching and valid
stores (step S215). LSU 108 determines if the read locations
from the previous step contain the piece of data that is
required for the load. LSU 108 compares the logical address
tag, directory hit way tag, and byte validity indicators of
each read location to information about the requested load to
make the determination.

If there are not any matching, valid stores (decision block
S215, no branch), LSU 108 retrieves the load data from the
local cache (step S220). LSU 108 performs retrieval of the
load data in traditional manners known in the art. LSU 108
may retrieve the load data from any number of caches (not
shown) or main memory.

If there are any matching, valid stores (decision block
S215, yes branch), LSU 108 retrieves the data from the
youngest store entry that is older than the load (step S225).
A matching and valid store has a logical address tag that is
equal to the corresponding portion of the load’s logical
address, a directory hit way tag equal to the directory hit way
of'the load, and a byte validity indicator(s) active for byte(s)
requested by the load. In an embodiment, if only one store
entry is found in the store forwarding cache 123 for a piece
of data, then LSU 108 retrieves the data from that entry. In
an alternative embodiment, if there are more than one store
entry found in the store forwarding cache 123 for a piece of
data, then L.SU 108 retrieves the youngest (i.e., the closest
to age of the load), that is older than the load (i.e., occurred
before the load). To do this, the load’s instruction age is
compared to the instruction age tags of the determined
matching, valid stores. In yet another alternative embodi-
ment, if there are multiple store entries found in the store
forwarding cache 123 for multiple pieces of data of a load
request, then LSU 108 retrieves the youngest store entry for
each piece of data that is older than the load.

LSU 108 compares the load against a queue of all in-flight
store instructions (step S230). In-flight store instructions are
entries 128 found in STQ 122 and are instructions that have
been completed, or processed, but have not yet been retired.
LSU 108 compares the load received in steps S205 to the
entries 128 found in STQ 122. STQ 122 does not contain the
store forwarding data. The store forwarding data is found in
the store forwarding cache 123, discussed previously.

LSU 108 determines if there are any matching stores that
did not forward (decision block S235). In other words, LSU

5

10

15

20

25

30

35

40

45

50

55

60

65

6

108 determines if there are any stores in the STQ 122 that
did not have their store data from the store forwarding cache
123 forwarded. This may occur in an instance where the
store data is not yet available in the store forwarding cache
123. If there are not any matching stores that did not forward
(decision block S235, no branch), the load successfully
executed (step S240) and processor 101 continues to process
load/store requests in a traditional manner. If there are
matching stores that did not forward (decision block S235,
yes branch), the load is rejected (step S245), or does not
occur, and the load is re-executed and processing begins at
step S205.

FIG. 3 depicts computing system 100 that is an example
of a system that includes store forwarding cache 123.
Processors 301 and cache 303 are substantially equivalent to
processor 101, store forwarding cache 123, and .1 cache
124, discussed previously. Computer system 300 includes
processors 301, cache 303, memory 302, persistent storage
305, communications unit 307, input/output (1/O)
interface(s) 306 and communications fabric 304. Commu-
nications fabric 304 provides communications between
cache 303, memory 302, persistent storage 305, communi-
cations unit 307, and input/output (I/O) interface(s) 306.
Communications fabric 304 can be implemented with any
architecture designed for passing data and/or control infor-
mation between processors (such as microprocessors, com-
munications and network processors, etc.), system memory,
peripheral devices, and any other hardware components
within a system. For example, communications fabric 304
can be implemented with one or more buses or a crossbar
switch.

Memory 302 and persistent storage 305 are computer
readable storage media. In this embodiment, memory 302
includes random access memory (RAM). In general,
memory 302 can include any suitable volatile or non-volatile
computer readable storage media. Cache 303 is a fast
memory that enhances the performance of processors 301 by
holding recently accessed data, and data near recently
accessed data, from memory 302.

Program instructions and data used to practice embodi-
ments of the present invention may be stored in persistent
storage 305 and in memory 302 for execution by one or
more of the respective processors 301 via cache 303. In an
embodiment, persistent storage 305 includes a magnetic
hard disk drive. Alternatively, or in addition to a magnetic
hard disk drive, persistent storage 305 can include a solid
state hard drive, a semiconductor storage device, read-only
memory (ROM), erasable programmable read-only memory
(EPROM), flash memory, or any other computer readable
storage media that is capable of storing program instructions
or digital information.

The media used by persistent storage 305 may also be
removable. For example, a removable hard drive may be
used for persistent storage 305. Other examples include
optical and magnetic disks, thumb drives, and smart cards
that are inserted into a drive for transfer onto another
computer readable storage medium that is also part of
persistent storage 305.

Communications unit 307, in these examples, provides
for communications with other data processing systems or
devices. In these examples, communications unit 307
includes one or more network interface cards. Communica-
tions unit 307 may provide communications through the use
of either or both physical and wireless communications
links. Program instructions and data used to practice
embodiments of the present invention may be downloaded
to persistent storage 305 through communications unit 307.

US 9,483,409 B2

7

1/O interface(s) 306 allows for input and output of data
with other devices that may be connected to each computer
system. For example, I/O interface 306 may provide a
connection to external devices 308 such as a keyboard,
keypad, a touch screen, and/or some other suitable input
device. External devices 308 can also include portable
computer readable storage media such as, for example,
thumb drives, portable optical or magnetic disks, and
memory cards. Software and data used to practice embodi-
ments of the present invention can be stored on such portable
computer readable storage media and can be loaded onto
persistent storage 305 via /O interface(s) 306. 1/O
interface(s) 306 also connect to display 309.

Display 309 provides a mechanism to display data to a
user and may be, for example, a computer monitor.

The programs described herein are identified based upon
the application for which they are implemented in a specific
embodiment of the invention. However, it should be appre-
ciated that any particular program nomenclature herein is
used merely for convenience, and thus the invention should
not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

The present invention may be a system, a method, and/or
a computer program product. The computer program prod-
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

10

15

20

25

30

35

40

45

50

55

60

65

8

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart

US 9,483,409 B2

9

or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the Figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
invention. The terminology used herein was chosen to best
explain the principles of the embodiment, the practical
application or technical improvement over technologies
found in the marketplace, or to enable others of ordinary
skill in the art to understand the embodiments disclosed
herein.

What is claimed is:
1. A method for executing a load with store forwarding
data, the method comprising the steps of:
receiving a load request, wherein the load request is a
request to retrieve a piece of data from a location in
memory, and wherein the load request follows one or
more store requests in a set of instructions to store a
piece of data in the location in memory;
determining one or more possible locations in a cache for
a piece of data corresponding to the location in
memory;
responsive to determining the one or more possible loca-
tions in the cache, reading each possible location of the
one or more possible locations in the cache;
determining if at least one location of the one or more
possible locations contains data to be stored in the
location in memory; and
responsive to determining that the at least one location of
the one or more possible locations contains data to be
stored in the location in memory, loading data in one
location of the at least one location, wherein the data in
the one location is from a store request of the one or
more store requests, and wherein the store request is
closest in the set of instructions to the load request.
2. The method of claim 1, wherein the cache contains a
plurality of entries and wherein each entry includes a logical
address tag, a directory hit way tag, an instruction age/
identifier tag, a byte validity indicator, and store data.
3. The method of claim 1, wherein the cache is an n-way
associative cache.
4. The method of claim 1, further comprising:
utilizing a table, wherein the table includes a list of all
store requests, processed but not retired, in the set of
store instructions to store a piece of data in the location
in memory.
5. The method of claim 4, further comprising:
determining whether the one or more possible locations
contain data corresponding to each store request of the
store requests in the table; and

10

15

20

25

30

35

40

45

50

55

60

65

10

responsive to determining the one or more possible loca-
tions does not contain data corresponding to each store
request of the store requests in the table, rejecting the
loaded data.

6. The method of claim 1, further comprising:

determining that the loaded data contained a portion of

total data requested by the load request; and

responsive to determining the loaded data contained a

portion of total data requested by the load request,
loading, from memory, a remaining portion of the total
data requested by the load request.

7. The method of claim 1, wherein memory is one or more
of the following: volatile computer readable storage media,
non-volatile computer readable storage media, random
access memory (RAM), cache, optical and magnetic drives,
thumb drives, or smart cards.

8. A computer program product for executing a load with
store forwarding data, the computer program product com-
prising:

one or more computer readable storage media; and

program instructions stored on the one or more computer

readable storage media, the program instructions com-

prising:

program instructions to receive a load request, wherein
the load request is a request to retrieve a piece of data
from a location in memory and wherein the load
request follows one or more store requests in a set of
instructions to store a piece of data in the location in
memory;

program instructions to determine one or more possible
locations in a cache for the piece of data correspond-
ing to the location in memory;

program instructions, responsive to determining the
one or more possible locations in the cache, to read
each possible location of the one or more possible
locations in the cache;

program instructions to determine if at least one loca-
tion of the one or more possible locations contains
data to be stored in the location in memory; and

program instructions, responsive to determining that
the at least one location of the one or more possible
locations contains data to be stored in the location in
memory, to load data in one location of the at least
one location, wherein the data in the one location is
from a store request of the one or more store
requests, and wherein the store request is closest in
the set of instructions to the load request.

9. The computer program product of claim 8, wherein the
cache contains a plurality of entries and wherein each entry
includes a logical address tag, a directory hit way tag, an
instruction age/identifier tag, a byte validity indicator, and
store data.

10. The computer program product of claim 8, wherein
the cache is an n-way associative cache.

11. The computer program product of claim 8, further
comprising program instructions, stored on the one or more
computer readable storage media, to:

utilize a table, wherein the table includes a list of all store

requests, processed but not retired, in the set of store
instructions to store a piece of data in the location in
memory.

12. The computer program product of claim 11, further
comprising program instructions, stored on the one or more
computer readable storage media, to:

determine whether the one or more possible locations

contain data corresponding to each store request of the
store requests in the table; and

US 9,483,409 B2

11

responsive to determining the one or more possible loca-
tions does not contain data corresponding to each store
request of the store requests in the table, reject the
loaded data.

13. The computer program product of claim 8, further
comprising program instructions, stored on the one or more
computer readable storage media, to:

determine that the loaded data contained a portion of total

data requested by the load request; and

responsive to determining the loaded data contained a

portion of total data requested by the load request, load,
from memory, a remaining portion of the total data
requested by the load request.

14. The computer program product of claim 8, wherein
memory is one or more of the following: volatile computer
readable storage media, non-volatile computer readable stor-
age media, random access memory (RAM), cache, optical
and magnetic drives, thumb drives, or smart cards.

15. A computer system for executing a load with store
forwarding data, the computer system comprising:

one or more computer processors;

one or more computer readable storage media; and

program instructions stored on the one or more computer

readable storage media for execution by at least one of

the one or more computer processors, the program

instructions comprising:

program instructions to receive a load request, wherein
the load request is a request to retrieve a piece of data
from a location in memory and wherein the load
request follows one or more store requests in a set of
instructions to store a piece of data in the location in
memory;

program instructions to determine one or more possible
locations in a cache for the piece of data correspond-
ing to the location in memory;

program instructions, responsive to determining the
one or more possible locations in the cache, to read
each possible location of the one or more possible
locations in the cache;

program instructions to determine if at least one loca-
tion of the one or more possible locations contains
data to be stored in the location in memory; and

program instructions, responsive to determining that
the at least one location of the one or more possible
locations contains data to be stored in the location in

10

15

25

30

40

12

memory, to load data in one location of the at least
one location, wherein the data in the one location is
from a store request of the one or more store
requests, and wherein the store request is closest in
the set of instructions to the load request.

16. The computer system of claim 15, wherein the cache
contains a plurality of entries and wherein each entry
includes a logical address tag, a directory hit way tag, an
instruction age/identifier tag, a byte validity indicator, and
store data.

17. The computer system of claim 15, wherein the cache
is an n-way associative cache.

18. The computer system of claim 15, further comprising
program instructions, stored on the one or more computer
readable storage media for execution by the at least one of
the one or more computer processors, to:

utilize a table, wherein the table includes a list of all store
requests, processed but not retired, in the set of store
instructions to store a piece of data in the location in
memory.

19. The computer system of claim 18, further comprising
program instructions, stored on the one or more computer
readable storage media for execution by the at least one of
the one or more computer processors, to:

determine whether the one or more possible locations
contain data corresponding to each store request of the
store requests in the table; and

responsive to determining the one or more possible loca-
tions does not contain data corresponding to each store
request of the store requests in the table, reject the
loaded data.

20. The computer system of claim 15, further comprising
program instructions, stored on the one or more computer
readable storage media for execution by the at least one of
the one or more computer processors, to:

determine that the loaded data contained a portion of total
data requested by the load request; and

responsive to determining the loaded data contained a
portion of total data requested by the load request, load,
from memory, a remaining portion of the total data
requested by the load request.

#* #* #* #* #*

